General Certificate of Education June 2006 Advanced Level Examination

ASSESSMENT and QUALIFICATIONS ALLIANCE

MM2B

MATHEMATICS Unit Mechanics 2B

Tuesday 6 June 2006 1.30 pm to 3.00 pm

For this paper you must have:

- an 8-page answer book
- the **blue** AQA booklet of formulae and statistical tables You may use a graphics calculator.

Time allowed: 1 hour 30 minutes

Instructions

- Use blue or black ink or ball-point pen. Pencil should only be used for drawing.
- Write the information required on the front of your answer book. The *Examining Body* for this paper is AQA. The *Paper Reference* is MM2B.
- Answer all questions.
- Show all necessary working; otherwise marks for method may be lost.
- The **final** answer to questions requiring the use of calculators should be given to three significant figures, unless stated otherwise.
- Take $g = 9.8 \,\mathrm{m \, s^{-2}}$, unless stated otherwise.

Information

- The maximum mark for this paper is 75.
- The marks for questions are shown in brackets.
- Unit Mechanics 2B has a written paper only.

Advice

• Unless stated otherwise, you may quote formulae, without proof, from the booklet.

P85434/Jun06/MM2B 6/6/6/ MM2B

Answer all questions.

1 A particle moves in a horizontal plane, in which the unit vectors \mathbf{i} and \mathbf{j} are directed east and north respectively. At time t seconds, its position vector, \mathbf{r} metres, is given by

$$\mathbf{r} = (2t^3 - t^2 + 6)\mathbf{i} + (8 - 4t^3 + t)\mathbf{j}$$

- (a) Find an expression for the velocity of the particle at time t. (3 marks)
- (b) (i) Find the velocity of the particle when $t = \frac{1}{3}$. (2 marks)
 - (ii) State the direction in which the particle is travelling at this time. (1 mark)
- (c) Find the acceleration of the particle when t = 4. (3 marks)
- (d) The mass of the particle is 6 kg. Find the magnitude of the resultant force on the particle when t = 4. (3 marks)
- 2 A ball of mass $0.6 \,\mathrm{kg}$ is thrown vertically upwards from ground level with an initial speed of $14 \,\mathrm{m\,s^{-1}}$.
 - (a) Calculate the initial kinetic energy of the ball. (2 marks)
 - (b) Assuming that no resistance forces act on the ball, use an energy method to find the maximum height reached by the ball. (3 marks)
 - (c) An experiment is conducted to confirm the maximum height for the ball calculated in part (b). In this experiment the ball rises to a height of only 8 metres.
 - (i) Find the work done against the air resistance force that acts on the ball as it moves. (3 marks)
 - (ii) Assuming that the air resistance force is constant, find its magnitude. (2 marks)
 - (d) Explain why it is **not** realistic to model the air resistance as a constant force. (1 mark)

3 The diagram shows a uniform rod, AB, of mass 10 kg and length 5 metres. The rod is held in equilibrium in a horizontal position, by a support at C and a light vertical rope attached to A, where AC is 2 metres.

- (a) Draw and label a diagram to show the forces acting on the rod. (1 mark)
- (b) Show that the tension in the rope is 24.5 N. (3 marks)
- (c) A package of mass m kg is suspended from B. The tension in the rope has to be doubled to maintain equilibrium.
 - (i) Find m. (4 marks)
 - (ii) Find the magnitude of the force exerted on the rod by the support. (3 marks)
- (d) Explain how you have used the fact that the rod is uniform in your solution. (1 mark)
- A particle of mass m is suspended from a fixed point O by a light inextensible string of length I. The particle hangs in equilibrium at the point P vertically below O. The particle is then set into motion with a horizontal velocity U so that it moves in a complete vertical circle with centre O. The point Q on the circle is such that $\angle POQ = 60^{\circ}$, as shown in the diagram.

- (a) Find, in terms of g, l and U, the speed of the particle at Q. (4 marks)
- (b) Find, in terms of g, l, m and U, the tension in the string when the particle is at Q.

 (5 marks)
- (c) Find, in terms of g, l, m and U, the tension in the string when the particle returns to P.

 (2 marks)

5 The graph shows a model for the resultant horizontal force on a car, which varies as it accelerates from rest for 20 seconds. The mass of the car is 1200 kg.

(a) The acceleration of the car at time t seconds is $a \text{ m s}^{-2}$. Show that

$$a = \frac{2}{3} + \frac{t}{20}$$
, for $0 \le t \le 20$ (5 marks)

- (b) Find an expression for the velocity of the car at time t. (3 marks)
- (c) Find the distance travelled by the car in the 20 seconds. (4 marks)
- (d) An alternative model assumes that the resultant force increases uniformly from 900 to 2100 newtons during the 20 seconds. Which term in your expression for the velocity would change as a result of this modification? Explain why. (2 marks)
- 6 A car of mass $1200 \, \text{kg}$ travels round a roundabout on a horizontal, circular path at a constant speed of $14 \, \text{m s}^{-1}$. The radius of the circle is 50 metres. Assume that there is no resistance to the motion of the car and that the car can be modelled as a particle.
 - (a) A friction force, directed towards the centre of the roundabout, acts on the car as it moves. Show that the magnitude of this friction force is 4704 N. (4 marks)
 - (b) The coefficient of friction between the car and the road is μ . Show that $\mu \geqslant 0.4$.

 (3 marks)
- 7 A particle of mass 20 kg moves along a straight horizontal line. At time t seconds the velocity of the particle is $v \, \text{m s}^{-1}$. A resistance force of magnitude $10 \sqrt{v}$ newtons acts on the particle while it is moving. At time t = 0 the velocity of the particle is $25 \, \text{m s}^{-1}$.
 - (a) Show that, at time t

$$v = \left(\frac{20 - t}{4}\right)^2 \tag{7 marks}$$

(b) State the value of t when the particle comes to rest. (1 mark)

END OF QUESTIONS